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A new hetero-metal 2-dimensional (2D) spin-crossover
complex, {[FeII(3-Fpy)2][Au

I(CN)2]2}n (3-Fpy = 3-fluoropyri-
dine) has been synthesized and characterized crystallographical-
ly and magnetically. The complex consists of an octahedral FeII

ion and a mononuclear [AuI(CN)2]
� unit with a linear coordina-

tion geometry which combine to form an infinite 2D structure.
The spin transition observed for this complex is accompanied
by a drastic and reversible change of color from blue to purple.

Development of inorganic supramolecular architectures is
a rapidly evolving area of research that has implications for
the rational design of functional materials.1 High-dimensionality
coordination polymer systems may possess useful physical and/
or chemical properties, including magnetic, nonlinear optical,
conducting, catalytic, gas storage, and ion exchange.2 In partic-
ular, their phase transitions have always interested the scientific
community from a fundamental point of view, but they have
also been of interest because of their possible applications.

In the field of molecular magnetism, spin-crossover com-
plexes constitute a unique kind of switchable material.3 On ex-
ternal stimulation, such as heat or light, spin-crossover com-
plexes change between the low-spin (LS) and high-spin (HS)
ground state because the strength of the ligand field in the com-
plexes is at the borderline between the low- and high-spin
states.4 Such complexes provide a fascinating example of elec-
tronically dependent effects in transition-metal compounds.
Measurements of magnetic susceptibility, heat capacity, and
structural analysis by X-ray diffraction, have been carried out
on spin-crossover complexes. For complexes containing the
FeII ion, detailed investigations using 57Fe Mössbauer spectros-
copy have also been carried out.5 Such complexes are particular-
ly suitable for investigating spin characteristics since the spin
transitions occur with distinct behavior: gradually, or rapidly,
or step-wise, and with hysteresis.

Hofmann-like structures containing FeII ions have afforded
a number of 2-dimensional6 and 3-dimensional7 spin-crossover
polymers. We have developed a synthetic route to prepare
several hetero-metal 2-dimensional coordination polymers with
the mononuclear [AuI(CN)2]

� unit.
In this paper, we report the synthesis, magnetic properties,

and X-ray crystal structure of a new hetero-metal FeIIAuI 2-di-
mensional complex, {[FeII(3-Fpy)2][Au

I(CN)2]2}n (3-Fpy =
3-fluoropyridine) (shown in Figure 1).

The complex, {[FeII(3-Fpy)2][Au
I(CN)2]2}n was synthe-

sized by reaction of an aqueous mixture of FeSO4
.(NH4)2SO4

.
6H2O (0.25mmol, 98mg) and 3-Fpy (0.5mmol, 48.5mg) in
10mL of water, with an aqueous solution of K[AuI(CN)2]
(0.25mmol, 72mg) at room temperature. The two solutions were

communicated. Blue single crystals suitable for X-ray diffrac-
tion were obtained from the mixture by crystallization in a glass
tube over a period of more than 2 days. Elemental analysis con-
firmed the organic content (found: C, 22.36; H, 1.28; N, 10.79%.
Calcd for C14H8N6F2FeAu2: C, 22.48; H, 1.08; N, 11.23%).

The crystal structure was analyzed by single-crystal X-ray
diffraction at 223K.8,10 The asymmetric unit of the complex
consists of the mixed-metal FeIIAuI unit of [FeII(3-Fpy)2]-
[AuI(CN)2]2 (shown in Figure 1). The FeII ion in [FeII(3-
Fpy)2][Au

I(CN)2]2 is octahedrally coordinated by six nitrogen
atoms. All AuI atoms have linear coordination geometries
with the cyano substituents binding to the FeII ions. While the
F(1) in the 3-Fpy ligand is disordered, F(2) in the other 3-Fpy
ligand is not disordered. Thus, the two 3-Fpy ligands in
[FeII(3-Fpy)2][Au

I(CN)2]2 are not equivalent and coexist in
transoid and cisoid conformations for Fe(1). The structure
comprises a corrugated 2-D cyano-bridged array. Interestingly,
the layers interact by pairs defining bilayers (shown in
Figure 1). The cohesive force in the bilayers stems from strong
aurophilic interactions. The average Au���Au distance in the
bilayers is 3.152 Å, less than the sum of the van der Waals
radii of Au (3.60 Å).

Magnetic measurements were performed on a powder sam-

Figure 1. Drawing showing a [FeII(3-Fpy)2][Au
I(CN)2]2 frag-

ment. The hetero-metals FeIIAuI are linked in an infinite 2-D
lattice structure (a). Stacking of six consecutive layers of
{[FeII(3-Fpy)2][Au

I(CN)2]2}n along the [001] direction, yellow
lines are AuI aurophilic interactions (b), and the cylinder draw-
ing, 2-D structure of {[FeII(3-Fpy)2][Au

I(CN)2]2}n (c). In this
picture, hydrogen atoms are omitted for clarity.
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ple, in the cooling mode at rates of 2K�min�1 (300–130K),
0.03K�min�1 (130–74K), and 0.5K�min�1 (74–2K) and warm-
ing mode at rates of 0.5K�min�1 (2–82K), 0.03K�min�1 (82–
98K), and 1K�min�1 (98–300K) on an MPMS-XL Quantum
Design SQUID magnetometer. Figure 2 shows the thermal
dependence of �MT . At room temperature, �MT is 3.87
cm3 Kmol�1. This value is slightly higher than usual for para-
magnetic FeII compounds, possibly due to contribution of the or-
bital angular moment. Upon cooling, �MT remains almost con-
stant down to 150K; below this temperature, �MT undergoes a
sharp decrease. The complex displays a two-step spin transition
with a characteristic plateau centred at around 50% conversion
and the warming mode reveals the occurrence of a wide hystere-
sis loop (second step). The spin-crossover phenomenon for this
complex causes a reversible change of color from blue to purple.
The critical temperature (Tc

1) is 147.9K in the first step and
the cooling (Tc

2 down) and warming (Tc
2 up) modes in the second

step are 98.2 and 118.6K, giving an approximately 20.4K wide
hysteresis loop. The magnetic behavior on warming after rapid
cooling (10K�min�1 300–2K) is very different owing to the
kinetic relaxation from the high-spin to the low-spin state.

We have found a simple synthetic method to create a new
hetero-metal FeIIAuI bilayer 2-dimensional complex, {[FeII(3-
Fpy)2][Au

I(CN)2]2}n, from a mononuclear AuI complex
K[AuI(CN)2], Mohl’s salt FeSO4

.(NH4)2SO4
.6H2O and 3-

fluoropyridine and structurally characterized at 223K. The coor-
dination polymer undergoes thermally induced spin-crossover
transitions with magnetic and chromatic bistability. The
introduction of the pyridine ligands plays an important role
in spin-crossover.

Recently, Real and co-workers synthesized the compounds
{Fe(3-Xpyridine)2[Ag(CN)2]2} (X = F, Cl, Br, and I).9 In
comparison with {Fe(3-Fpy)2[Ag(CN)2]2} (1) and {Fe(3-
Fpy)2[Au(CN)2]2} (2), 1 undergoes a gradual two-step transition
with no hysteresis, whereas 2 undergoes a rapid two-step transi-
tion with wide hysteresis. The reason for two-step transition in
the 1 is occurrence of two crystallographically distinct FeII sites
whereas in the 2 is maybe occurrence of local different 3-Fpy
ligands sites.

The exploitation of such hetero-metal coordination poly-
mers exhibiting spin-crossover phase transitions, could be im-
portant in new functional materials. Thus, this simple synthetic
method for the preparation of hetero-metal FeIIAuI 2-dimension-

al complexes might be useful for generating a variety of
functional complexes, which are presently the subject of inten-
sive studies by chemists and physicists, aiming at the eventual
use of their potential switching properties in thermal and pres-
sure sensors as well as optical devices.
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Figure 2. Thermal dependence of �MT for {[FeII(3-Fpy)2]-
[AuI(CN)2]2}n. The sample was cooled from 300 to 2K ( blue)
and then warmed from 2 to 300K ( red).
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